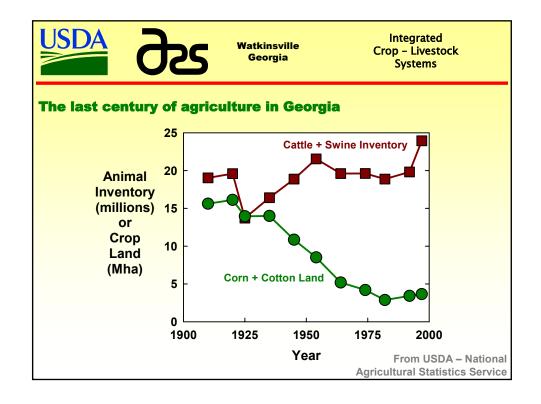
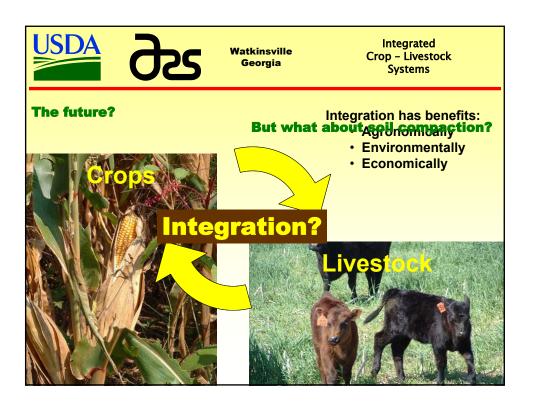
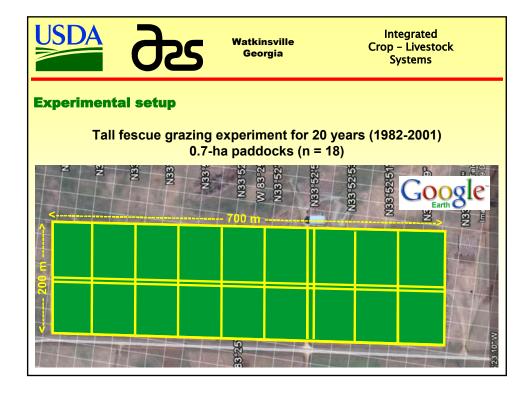
Soil Quality in Integrated Crop-Livestock Systems with Conservation and Conventional Tillage


Alan J. Franzluebbers


Ecologist



Watkinsville Georgia USA

Integrated Crop - Livestock Systems

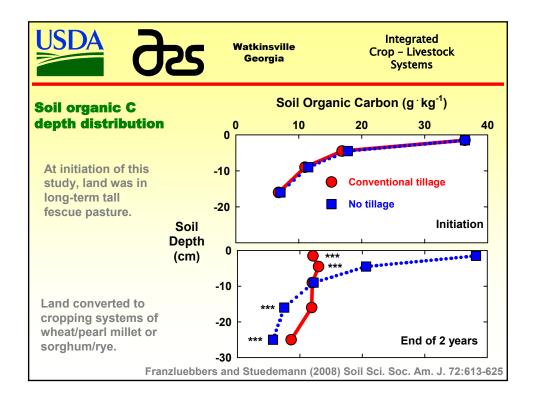
Experimental setup

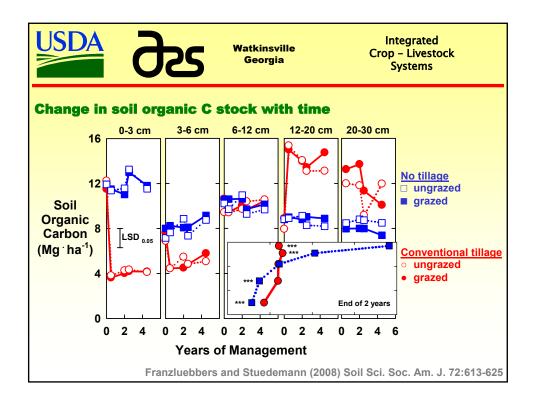
Converted to cropping system experiment in 2002 0.5-ha grazed paddocks (n = 18) + 0.2 ha ungrazed controls (n = 18)

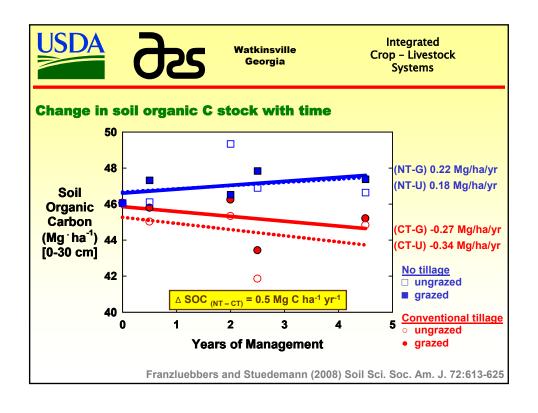
Watkinsville Georgia Integrated Crop – Livestock Systems

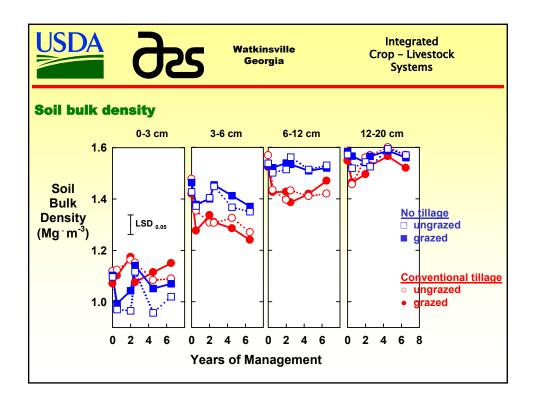
Tillage approaches

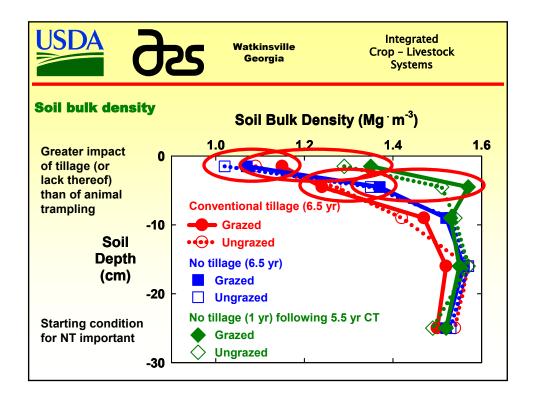
Integrated Crop - Livestock Systems


Cropping systems


Year	System 1 System 2			
2002, 2003, 2004, 2005	Sorghum/rye Pearl millet/whe			
	Renewable Agriculture and Food Systems (2007) 22:168-180			
2006, 2007, 2008	Corn/wheat– soybean/rye+clover [low N input]	Corn/wheat– soybean/rye+ryegrass [high N input]		
2009	Pearl millet/wheat	Pearl millet/wheat		

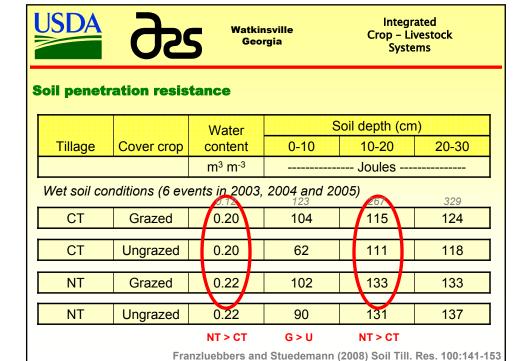

Both systems with 4 reps of CT and 4 reps of NT					
Grazed components					
	Rye, corn stover, Pearl mille				
rye+clover, pearl millet stover, rye+ryegrass					





Integrated Crop - Livestock Systems

Soil penetration resistance


		Water	Soil depth (cm)			
Tillage	Cover crop	content	0-10	10-20	20-30	
		m ³ m ⁻³	Joules			

Dry soil conditions (4 events in 2004 and 2005)

СТ	Grazed	0.12		119		246	290
СТ	Ungrazed	0.11	+	84	+	261	337
NT	Grazed	0.12	7	151	F	248	296
NT	Ungrazed	0.12		139		313	394

NT > CT

Franzluebbers and Stuedemann (2008) Soil Till. Res. 100:141-153

Integrated Crop - Livestock Systems

Single-ring water infiltration

Tillage	Cover crop	Water content	Macropore filling	Infiltration rate				
	m³ m ⁻³ mm mm min ⁻¹							
N/ (''								

Wet soil conditions (3 events in 2003, 2004, and 2005)

		0.11	21	1.2				
CT	Grazed	0.18	24	4.0				
CT	Ungrazed	0.19	29	6.1				
NT	Grazed	0.20	12	3.1				
NT	Ungrazed	0.21	26	6.5				
	•	•						

U > G

Franzluebbers and Stuedemann (2008) Soil Till. Res. 100:141-153

Watkinsville Georgia Integrated Crop – Livestock Systems

Soil biochemical C and N fractions

		Particulate	ulate Microbial	Mineralizable		
Tillage	Cover crop	organic C	biomass C	С	N	
		Mg		kg ha-	¹ 24 d ⁻¹	

Average from 0.5, 2.0, and 2.5 yr after initiation

CT	Grazed	2.2	0.44	383	24
СТ	Ungrazed	2.3	0.46	444	24
NT	Grazed	7.3	0.82	724	57
NT	Ungrazed	7.5	0.77	681	62

NT > CT

NT > CT *

NT > CT **

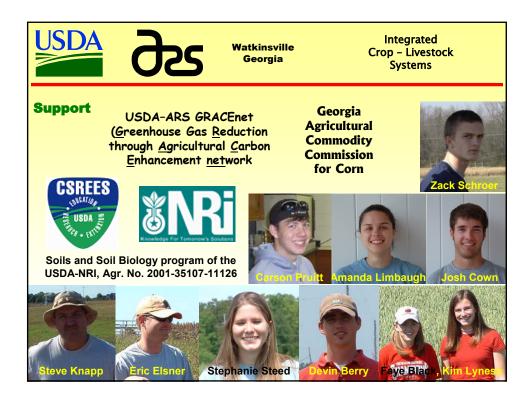
NT > CT

Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Integrated Crop - Livestock Systems

Implications

- 1. Cover crops (winter or summer) can provide high-quality forage and increase economic return and farm diversity, but farmers have been reluctant to take this advantage due to perceived "compaction" caused by animal trampling
- 2. Rotation of crops following long-term pasture was highly effective in limiting (or avoiding) compaction with grazing cattle by creating a SOM-enriched surface condition that was preserved for many years with subsequent conservation-tillage management



Watkinsville Georgia Integrated Crop – Livestock Systems

Implications

- 3. Grazing of cover crops does indeed compact soil, but not to the detrimental levels often perceived:
 - ✓ Grazing had little effect on bulk density under either tillage system – much less than lack of tillage when switching from conventional to no tillage
 - ✓ Grazing had essentially no effect on soil organic C content and depth distribution
 - ✓ Grazing increased penetration resistance of the surface 10 cm of soil – discernable only under wet soil conditions
 - ✓ Grazing reduced single-ring water infiltration discernable only under wet soil conditions
 - ✓ Grazing actually improved surface-soil biochemical properties under long-term conservation tillage

Presentation at the 18th International Soil Tillage Research Organization Triennial meeting in Izmir TURKEY, 15-19 June 2009